
CS Basics
4) Development Process
Codification of numbers

E. Benoist & C. Grothoff
Fall Term 2018-19

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 1

Development Process

� Binary vs text files

� “Endianness”

� Negative Numbers

� Introduction Floating Point
Floating point binary number
Fixed point numbers
Floating points

� Compilation
Assembly Language

� Development process

� Using Make

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 2

Binary vs text files

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 3

Binary vs. text files

Different file formats
MS Office proprietary file formats: Word, Powerpoint, Excel,
Images: jpeg, gif, png
Documents: PDF
Executable: .EXE, .DLL,
Texts: .TXT, XML
Program source files: .java, .asm, .cpp, .c,

Two big families
Binary files (Office, images, executables, . . .)
Text files (txt, source files, . . .)

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 4

Text files
Text files

ASCII files
Each letter is encoded on 1 byte
Standardized on 7 bits (for english)
94 visible characters
Plus other invisibles like: cariage return, tab, space, bell, . . .

Text files encoding
Different encoding formats for accents
Depends on the language: western Europeans, eastern
Europeans, . . .
ISO latin1, UTF-8, . . .

Letters encoded on more than one byte
Unicode permits to encode any language
Characters can be coded on more than one byte
Arabic, chinese, herbrew, . . .

How to see text data?
Using any text editor or IDE: notepad (windows), gEdit,
Emacs, Kate, Eclipse, Net Beans . . .

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 5

Binary files
Proprietary file formats

Office files (Word, Excel, Powerpoint, . . .)
Any application

Executable files
Windows: .EXE,
Linux: elf (32 bits), elf64 (64-bit)
Contain machine instructions encoded in binary
Can be seen with a Hex editor
00h 9Ch 81h 2Eh 3Eh 4Fh ...

Images
tiff: bitmap of an image (high-quality photos)
jpeg: format family, lossy compression (for online photos)
gif: 8-bit color, animations possible (legacy)
png: 32-bit color, no animations, modern lossless compression
(screenshots)
svg: vector graphics
File formats are known, libraries manipulate those binary files

How to see binary data?
using an hex editor

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 6

Example of Binary File

Using the editor Bless

Can open a file

Two versions
See the text version on the left (bytes are interpreted as chars)
See the binary version on the right
Can read and edit any binary
You can edit executable files: BUT DO NOT DO IT!

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 7

The binary editor Bless

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 8

Interpreting Raw Data
Data is ultimately always encoded in binary

Common format for text is ASCII
Capital letter “S” in encoded with 53H
Corresponds also to the decimal number 83
In the computer it is a set of 8 bits 01010011B
This pattern can be anything else in a binary computer
program
Can be part of an instruction
Can be part of a 16-bit number
Can be part of a 32-bit integer
Can be any data (floating point numbers, objects, address,
. . .)

Example
53H may be interpreted as value 83
53 61H may be interpreted as the decimal 21’345
53 61 6D 0A H may be interpreted as the decimal
1’398’893’834
53 61 6D 0A 77 61 73 0AH may be interpreted as the
floating point 4.54365038640977.1093

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 9

“Endianness”

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 10

“Endianness”

Raw data are stored in an array
It can be displayed from right to left (like in French and
German)

0 1 2 3 4 5 6 7

53H 61H 6DH 0AH 77H 61H 73H 0AH

It can be displayed from left to right (like in Arabic or Hebrew)

7 6 5 4 3 2 1 0

0AH 73H 61H 77H 0AH 6DH 61H 53H

It remains the same array, and the same number

Which number does this array represents?
53616D0A7761730AH
or 0A7361770A6D6153H

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 11

Difference of order
118 Chapter 5 ■ The Right to Assemble

6153

00

61

0101

53

00

Reading from left to right
(English & most

European languages)
Reading from right to left

(Hebrew & Arabic)

Offset Increases Offset Increases

So is it “53 61H” or “61 53H” ?
Figure 5-4: Differences in display order vs. differences in evaluation order

evaluate numeric columns from right to left. The number 426 consists of four
hundreds, two tens, and six ones, not four ones, two tens, and six hundreds.
By convention here in the West, the least significant column is at the right,
and the values of the columns increase from right to left. The most significant
column is the leftmost.

Confusion is a bad idea in computing. So whether or not a sequence of
bytes is displayed from left to right or from right to left, we all have to agree
on which of those bytes represents the least significant figure in a multibyte
number, and which the most significant figure. In a computer, we have two
options:

We can agree that the least significant byte of a multibyte value is at the
lowest offset, and the most significant byte is at the highest offset.

We can agree that the most significant byte of a multibyte is at the lowest
offset, and the least significant byte is at the highest offset.

These two choices are mutually exclusive. A computer must operate using one
choice or the other; they cannot both be used at the same time at the whim of
a program. Furthermore, this choice is not limited to the operating system, or
to a particular program. The choice is baked right into the silicon of the CPU
and its instruction set. A computer architecture that stores the least significant
byte of a multibyte value at the lowest offset is called little endian. A computer
architecture that stores the most significant byte of a multibyte value at the
lowest offset is called big endian.

Figure 5-5 should make this clearer. In big endian systems, a multibyte value
begins with its most significant byte. In little endian systems, a multibyte value
begins with its least significant byte. Think: big endian, big end first; little
endian, little end first.

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 12

Convention
Big Endian

numbers are written with the most significant bytes first
The first end contains the “big” bytes
Number 20A1H is written in the array

0 1

20H A1H

Little Endian
numbers are written with the least significant bytes first
The first end contains the “little” bytes
Number 20A1H is written in the array

0 1

A1H 20H

Convention
Intel x86 architecture uses little endian
Other processors may use big endian
Some processors can even be switched!

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 13

Big Endian vs Little EndianChapter 5 ■ The Right to Assemble 119

61

61 61

53

53

00

53

0001

61

53

01

Big Endian Little Endian

Most
Significant

Byte

Least
Significant

Byte

Most
Significant

Byte

Least
Significant

Byte

Offset Increases Offset Increases

21345 24915
Unsigned
decimal

equivalent

16-bit
hexadecimal

Bytes in
storage

Figure 5-5: Big endian vs. little endian for a 16-bit value

There are big differences at stake here! The two bytes that begin our example
text file represent the decimal number 21,345 in a big endian system, but 24,915
in a little endian system.

It’s possible to do quite a bit of programming without being aware of a
system’s ‘‘endianness.’’ If you program in higher-level languages like Visual
Basic, Delphi, or C, most of the consequences of endianness are hidden by the
language and the language compiler—at least until something goes wrong
at a low level. Once you start reading files at a byte level, you have to know
how to read them; and if you’re programming in assembly language, you had
better be comfortable with endianness going in.

Reading hex displays of numeric data in big endian systems is easy, because
the digits appear in the order that Western people expect, with the most
significant digits on the left. In little endian systems, everything is reversed;
and the more bytes used to represent a number, the more confusing it can
become. Figure 5-6 shows the endian differences between evaluations of a
32-bit value. Little endian programmers have to read hex displays of multibyte
values as though they were reading Hebrew or Arabic, from right to left.

Remember that endianness differences apply not only to bytes stored in
files but also to bytes stored in memory. When (as I’ll explain later) you
inspect numeric values stored in memory with a debugger, all the same rules
apply.

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 14

Negative Numbers

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 15

How to Represent Negative
Numbers?

Numbers can be positive
Decimal: 15
Stored in memory in hexadecimal: 0FH (on 8 bits)
or 0000000FH in 32 bit

And can also be negative
Decimal: -15
How should we represent it?

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 16

Different possible representations
One bit for the sign

The first bit is used for the sign
15 is respresented by 000FH on a 16-bit architecture
-15 by 800FH

Problems:
Two representations of 0 exist: 0000H and 8000H
Standard (bit-level) addition does not work:
15 + (-15) = 000FH + 800FH = 801EH = -30

One’s Complement
The negative number is obtained by inverting all the bits
15 = 000FH
15 = 0000 0000 0000 1111B
-15 is represented by 1111 1111 1111 0000B
-15 is represented by FFF0H

Problems
We have two different representations of 0 0000H and FFFFH
Addition does not work
15 = 000FH and -5 = FFFAH The sum is 10009H which
makes 9 if we ignore the overflow.

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 17

Two’s Complement

Negative numbers are designed to respect addition
15 + (-10) = 5
Idea: -X is represented by 2n − X if n is the number of bits
X + (-X) = X +2n − X = 0 + overflow

Example 1
Notation for -1 on 16 bits
216 − 1 = 215 + 214 + 213 + 212 + 211 + · · ·+ 21 + 20

-1 is written FFFFH
1+(-1) = 10000H (overflow is out of the 16 bits)

Example 2
Notation for -20 on 16 bits
216 − 20 = Hard to compute

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 18

Two’s Complement
Method for computing

Computing the representation of -X
Take the binary representation of X
Invert all the bits of X
Add one

Example 2 (Cont): -20
20= 0000 0000 0001 0100B
We invert all the bits
1111 1111 1110 1011B
We add one
1111 1111 1110 1100B
Which can be noted in hexa: FFECH

Example 3: -32
32 = 0000 0000 0010 0000B
it makes 1111 1111 1101 1111B
We add one: 1111 1111 1110 0000B
Representation = FFE0H

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 19

Introduction Floating Point

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 20

Floating points

At the beginning of computer science, CPUs only provided integer
arithmetic. But, for scienfical uses, it is necessary to use ”real
numbers”. The data types used to model R, the real numbers,
have special properties that every programmer must know. Most of
programming languages (and CPUs and modern GPUs) now
support the IEEE 754 norm.

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 21

Floating point binary number

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 22

Convert decimal into binary

For integers
Divide by 2, and each time remember the remainder

Example: 543

543 | 1

271 | 1

135 | 1

67 | 1

33 | 1

16 | 0

8 | 0

4 | 0

2 | 0

1 | 1

543 = 1000011111B

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 23

Convert decimal into binary (Cont.)

For floating points numbers
For the decimal part: multiply each time by two.

Example: write 0.25 in binary

0.25 | 0.

0.5 | 0

1 | 1

0.25 = 0.01 B

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 24

Convert decimal into binary (Cont.)

Example 2: write 0.1 in binary

0.1 | 0.

0.2 | 0

0.4 | 0

0.8 | 0

1.6 | 1 -> 0.6

1.2 | 1 -> 0.2

0.4 | 0

0.8 | 0

1.6 | 1 -> 0.6

1.2 | 1 -> 0.2

...

0.1 = 0.000110011001100B

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 25

Fixed point numbers

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 26

Fixed point numbers

How to represent the decimal number 41.13 with fixed point
arithmetic ? Remember that every number in base b can be
written as:

x =
∞∑

i=−∞
dib

i

where the di are the digits of the numbers and b the base. So the
number (41.13)10 may be written as the sum:

41.13 = 4 ∗ 101 + 1 ∗ 100 + 1 ∗ 10−1 + 3 ∗ 10−2

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 27

Binary fixed point numbers

As the number 41.13 exist independantly of its representation, it
should be possible to write this number using the binary notation.

1. First code the integer part of the number in binary. The
decimal value 41 is written (101001)2.

2. Compute the decimal part of the number. The value 0.13 is
written as (0.001000010100011110 . . .)2

Finally one have that:

(41.13)10 = (101001.001000010100011110 . . .)2

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 28

Some mathematical considerations

A rational number may be written written either with a finite
decimal form or with a periodic form. The property ”to be
rational” is independant of the base used to write the number.

A rational number may have a finite representation in one
base and a periodic infinite representation in another base.
For example, the number (1/3) has an infinite periodic
represention in base 10, but may be written as (0.1)3 in base
3. The decimal number (0.1) has an infinite periodic
representation in base 2. (0.1)10 = (0.00011)2

Irrational numbers have infinite and non-periodic form. Theses
numbers does not have a finite representation in any base.

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 29

Floating points

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 30

Floating points

The main drawback of fixed point numbers is that their size
depends on their magnitude and their precision. But, in
engineering, most of the time, one can reduce the precision as
the magnitude augment. Engineers use mostly the concept of
significant digits.

This notation is usually known as ”engineering notation” in
pocket calculators. For example one can write:

1.344 · 104 for the number 13440
2.342 · 10−5 for the number 0.00002342
4.430 · 100 for the number 4.430

All theses number have 4 significant digits (the mantissa).
The ”scaling” is done by the exponent of 10. The mantissa is
always a number between 1.000 and 9.999.

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 31

IEEE 754 representation

The norm IEEE 754 used for binary representation of floating point
numbers is based on the same idea.

the mantissa is a number between 1.0 and 2.0 (smaller than
2.0). The number of significant digits is given by the type of
floating point numbers used (float, double)

The exponent is now an exponent of 2. It may take positive
or negative values.

The norm introduces special values (negative infinity, positive
infinity, not a number, zero) that would be studied later in
this chapter.

The IEEE 754 norm introduce also rounding rules for numbers.

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 32

Floating numbers: a first example

For this example, the number is coded on 32 bits, which
correspond to the float format of Java for example.
How would be the decimal number 0.5 represented ?
(0.5)10 = 0 0111 1110 0000 0000 0000 0000 0000 000

The first bit (red) is the sign bit. Its value is 0 for positive
number and 1 for negative numbers.

The second group (blue) is the exponent. Here one have the
value -1. The exponent is coded as an unsigned integer with a
bias. The value of the exponent is computed by the formula
valueOfTheField - 127.

The third field contains the mantissa which here is 0 (there is
a hidden bit!)

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 33

The exponent

As explained above, the exponent is coded as an unsigned
integer (no two-complement) with a bias which correspond to
the half of the magnitude of the exponent. For example if the
exponent is coded on 8 bits, its magnitude is 28 = 256 and
the bias would be 28−1 − 1 = 127

Some values of the exponent are reserved to represent special
values of numbers. These values are (00)16 and (FF)16.

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 34

The mantissa

As explained before the matissa contain a value into the
interval 1 ≤ mantissa < 2. Remark that the value 2 does not
belong the the interval.

On this interval, one may see that the first bit is always 1 and
therefore is not represented explicitly (it is called the hidden
bit). The norm IEEE 754 defines a special format (called
denormalized numbers) to change this behavior.
This hidden bit causes the value of the mantissa to be 0 in
the example above.

The bits of the mantissa represent the sum of negative powers
of 2.

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 35

Special values

As it was mentioned above, the norm IEEE 754 introduces some
special values.

Exponent Mantissa Value Description

0016 = 0 0 Zero
0016 6= 0 ±0.m · 2−126 Denormalized

0116 to FE16 any ±1.m · 2e−127 Normalized
FF16 = 0 ±∞ ± Infinity
FF16 6= 0 NaN Not a Number

Remark: There are two possible representations for the value 0
(+0 and -0)

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 36

Comments on special values

The value zero needs a special representation as it is not
possible to represent it using the standard model (see example
above)

Denormalized values are not provided by standard
programming language. Be extremly careful if you need them
(performance issues)

Infinity represents numbers whose magnitude may not be
represented into the model. Arithmetical operations where
one operand is infinity are well defined by IEEE norm (see
next slide).

Operations where an operand has the value NaN cause an
error.

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 37

Operations with infinity

Operation Result

x/±∞ 0
±∞ · ±∞ ±∞

± non zero / 0 ±∞
∞+∞ ∞
±0/± 0 NaN
∞−∞ NaN
±∞/±∞ NaN
±∞ · 0 NaN

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 38

Different types of floating points

The norm IEEE 754 defines two types of floating points: single
precision and double precision. They differ only by the number of
bits used to store them

Sign Exponent Mantissa Bias

Single precision 1 8 23 127
Double precision 1 11 52 1023

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 39

Rounding

IEEE standard has four different rounding modes. The first is the
default, the others are called directed rounding.

Round to nearest : rounds to the nearest value. If the
number fall in the midway it is rounded to the nearest value
with an even (zero) least significant bit.

Round toward 0 - directed rounding towards 0

Round toward +∞
Round toward −∞

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 40

Example of rounding

Rounding mode +11.5 +12.5 -11.5 -12.5

to nearest, ties to even +12.0 +12.0 -12.0 -12.0
to nearest, ties away from zero +12.0 +13.0 -12.0 -13.0
toward 0 +11.0 +12.0 -11.0 -12.0
toward +∞ +12.0 +13.0 -11.0 -12.0
toward −∞ +11.0 +12.0 -12.0 -13.0

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 41

Compilation

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 42

Compilation

Text In, Machine code Out

Compiler
A program translator that reads source code (C, C++, Pascal,
. . .)
writes out object code files

Assembler
A special type of compilator
Designed for “Assembly Language”
Characteristic: Total control over the object code

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 43

Assembly Language

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 44

Assembly Language

Machine instructions are written in a text file
Readable by humans

Mnemonic
Every machine instruction has a “mnemonic”

Example
Machine instruction 9CH

Pushes the flags registers onto the stack
Mnemonic: PUSHF

Easier to remember than 9CH

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 45

Assembly source code

Arrangement of mnemonics

mov eax,4 ; 04H specifies the sys_write kernel call

mov ebx,1 ; 01H specifies stdout

mov ecx,Message ; Load starting address of display string into ECX

mov edx,MessageLength ; Load the number of chars to display into EDX

int 80H ; Make the kernel call

Mnemonic + operands = instruction

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 46

Comments

Comments start with “;”
You can write anything after the “;”
Each line should have comments

Assembly is not Java
Need to comment any action
Very difficult to read

Beware “write-only” source code
You write code in October
You start to learn C in November
You need to understand your code in January
Impossible to remember the meaning of your program

Solution: comment each and every line in assembly

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 47

Compilation

Assembler
Transforms assembly language source into an object module

Object code files can not be run
They need to be linked to other object code

One file containing all functionalities would be to large
Source is split in many files
Each is responsible for some functionaly

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 48

The assembler and the linker126 Chapter 5 ■ The Right to Assemble

.ASM

.ASM

.ASM

.ASM

.O

.O

.O

.O

Executable

MyProg

Assembler LinkerSource
code text

files

Object code
binary files

Single
executable

program file

Figure 5-8: The assembler and linker

When you’re first learning assembly programming, it’s unlikely that you’ll
be writing programs spread out across several source code files. This may
make the linker seem extraneous, as there’s only one piece to your program
and nothing to link together. Not so: the linker does more than just stitch
lumps of object code together into a single piece. It ensures that function
calls out of one object module arrive at the target object module, and that
all the many memory references actually reference what they’re supposed to
reference. The assembler’s job is obvious; the linker’s job is subtle. Both are
necessary to produce a finished, working executable file.

Besides, you’ll very quickly get to the point where you begin extracting
frequently used portions of your programs into your own personal code
libraries. There are two reasons for doing this:

1. You can move tested, proven routines into separate libraries and link
them into any program you write that might need them. This way, you

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 49

Object modules

The linker seams superfluous
At the begining: only one single file

Some parts of programs may be reused
Routines
Libraries of functions
Tested once, reused many times

Object module contains
Program code, including named procedures
References to named procedures lying outside the module
Named data objects such as numbers and strings with
predifined values
Named data objects that are just empty space “place holders”
Reference to data objects lying outside the module
Debugging information
Other, less common odds and ends that help the linker create
the executable file

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 50

Development process

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 51

Development process

Create your assembly language source

Use your assembler to create an object module from
your source file

Use your linker to create a program file

Test the program by running it inside a debugger

Update your code (and repeat the process)

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 52

Development process in Assembler
130 Chapter 5 ■ The Right to Assemble

.ASM

.O .O .O

.O

Source
file

Try it...

Executable

MyProg

Linker

Assembler

Previously assembled modules

No errors

Works
perfectly!

You’re
done!

Start
Here

Editor

Debugger

Linker
errors

No errors

Assembly
errors

Figure 5-9: The assembly language development process

files in the archive for the demonstration in this section. The archive file is
called asmsbs3e.zip, and it can be found at
www.copperwood.com/pub

or, alternatively, at
www.junkbox.com/pub

(I have these two domains on two different Internet hosting services so that
at least one of them will always be up and available. The file is identical,
whichever site you download it from.)

When unpacked, the listings archive will create individual project directories
under whatever parent directory you choose. I recommend unpacking it under
your asmwork directory, or whatever you end up naming it.

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 53

Development process I

Edit the source code file
Using an editor: gEdit for GNU/Linux for instance
Save file as a .asm file
Do not forget comments!

Assemble your file
Transform your .asm into a .o

Generates compilation errors

Back to the editor
Use error messages to find your syntax errors
and try to re-compile

Compilation warning messages
Ignore a warning message only if you know what it means
Normally: try to fix it

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 54

Development process II

Link your files
Input: some .o files
Output: an executable program
Linker: ld (like load)

Linker Errors
Reference to external functions are not right
Mostly it is YOUR fault
try to read and understand messages

Testing the executable file
Start the program
Produces an error (crash of the program)
Or a bug (do not do what you want to)

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 55

Development process III

Debugging using a debugger
Designed to help locate and identify bugs

Execute machine instructions
One at a time
See the different registers or memory after each step

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 56

Compilation instruction

Compile the file eatsyscall.asm

myname@mymachine :~$ cd csbasics/assembly/↘

→eatsyscall

myname@mymachine :~$ nasm -f ELF64 -g -F ↘

→dwarf eatsyscall.asm -o eatsyscall.o

myname@mymachine :~$ ls

eatsyscall.asm eatsyscall.o

nasm invokes the assembler
-f ELF64 the .o file will be generated in the “elf” format
(64-bit)
-g debug information is to be included in the .o file
-F dwarf debug information is to be generated in the “dwarf”
format (for use in DDD)
eatsyscall.asm is the source file
-o eatsyscall.o output is eatsyscall.o

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 57

Link your program with LD

Link the file eatsyscall.o

myname@mymachine :~$ ld -o eatsyscall ↘

→eatsyscall.o

myname@mymachine :~$ ls

eatsyscall.asm eatsyscall.o ↘

→eatsyscall

ld is the linker
-o eatsyscall the output file is the executable file eatsyscall
if you do not provide an output file, the file a.out is generated
eatsyscall.o the input file

Test the file

myname@mymachine :~$./ eatsyscall

Eat at Joe ’s!

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 58

Debugger

Invoke the debugger
KDE App starting in a window

myname@mymachine :~$ kdbg eatsyscall

Application more complex to deal with

myname@mymachine :~$ ddd eatsyscall

Watch the program execute step by step
See the changes in each register
See the changes in memory

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 59

Using Make

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 60

Using Make

Make is used for organizing the compilation of files
In the C world (C, asm, C++)

Developer writes a Makefile
Contain the dependencies of files to be compiled, and linked
Recompile files only if needed

Similar to ANT for Java

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 61

Dependences

Object files depend on source files
If the source file (assembler, C, C++) is newer, the .o must
be recompiled
Compare date of .o with date of .asm, .c or .cpp

Executable depends on object files
The linker will have to relink the files if one has changed.

Programmer must define rules
For each file generated, list the file it depends on
If not clear, give the command line for its generation

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 62

Rules

One executable depends on one object (linking is
implicit)

eatsyscall: eatsyscall.o

One executable depends on many objects (linking is
implicit)

linkbase: linkbase.o linkparse.o ↘

→linkfile.o

Linking can also be explicit

eatsyscall: eatsyscall.o

ld -o eatsyscall eatsyscall.o

Second line must be indented by a single tab character at the
begining of the line

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 63

Compiling a trivial asm file

Need two steps
First compile the .asm file into a .o file
Then link the .o file into an executable binary
The order of the rules is not the order of the execution of the
steps. It represents dependencies

eatsyscall: eatsyscall.o

ld -o eatsyscall eatsyscall.o

eatsyscall.o: eatsyscall.asm

nasm -f ELF64 -g -F dwarf eatsyscall.asm

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 64

Conclusion

Encodage
Little Endian: the first “End” contains the “little” bits
The light-weight bits are first

Real numbers
Are composed of a mantissa and an exponent

Compiling
First compile .asm into .o

Link all .o files into one executable
Process made easy by make

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 65

Bibliography

This course corresponds to chapter 5 and 6 of the course
book:
Assembly Language Step by Step (3rd Edition)

Course of CPVR speciality: Introduction to Computer
perception and virtual reality,
Claude Fuhrer BFH-TI (FRC1)

Berner Fachhochschule | Haute école spécialisée bernoise | Berne University of Applied Sciences 66

	Binary vs text files
	``Endianness''
	Negative Numbers
	Introduction Floating Point
	Floating point binary number
	Fixed point numbers
	Floating points

	Compilation
	Assembly Language

	Development process
	Using Make

